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Abstract

In this 501 project, we review the article “Connectivity of Connected Bi-
partite Graphs with Two Orbits” by Meng [1]. In that paper it is claimed
that any connected bipartite graph with two vertex orbits has connectiv-
ity equal to its minimum degree. This paper exhibits a counterexample
to that claim, as well as a modified version of their argument to prove a
weaker statement. Specifically, we show that the conclusion holds for any
connected graph with two vertex orbits, where the orbits coincide with the
cells of the bipartition. In other words, all half-vertex transitive graphs
have connectivity equal to their minimum degree.

1 Introduction

One of the first topics covered in any introductory graph theory course is the
connectivity of a graph. The concept, on its face, is very simple; the connectivity
of a graph is the minimum number of vertices that must be removed in order to
disconnect it. Despite the simplicity of the the definition, in practice it can be
quite difficult to determine the connectivity of an arbitrary graph, to the extent
that algorithms have been developed to assist with the process [4]. Of particular
interest are those graphs with either very high or very low connectivity, as edge
case examples tend to be the most useful in applications. Therefore, the business
of determining families of highly connected graphs is an active area of study
[5][6]. In this paper, we consider the work of Meng [1], in which it is claimed
that that any connected bipartite graph with two vertex orbits has connectivity
equal to its minimum degree. Here we exhibit a counterexample to that claim,
as well as a modified version of their argument to prove a weaker statement.
Specifically, we show that the conclusion holds for any connected graph with
two vertex orbits, where the orbits coincide with the cells of the bipartition. In
other words, all half-vertex transitive graphs have connectivity equal to their
minimum degree.
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2 Definitions

Let X = (V,E) be a connected graph with vertex set V and edge set E. Let Y
be a non-empty subset of V . The neighborhood of Y , denoted N(Y ) is defined
as:

N(Y ) = {v ∈ V \Y : ∃y ∈ Y s.t. xy ∈ E} (1)

In other words, the neighborhood of Y consists of all vertices in V \Y that are
adjacent to a vertex in Y . A cut set U of X is any set of vertices for which
V \U induces a subgraph of X that is either not connected or is isomorphic to
K1. The connectivity, κ, of X is the minimum cardinality of all cut sets of X.
A subset F of V is said to be a fragment if N(F ) is a minimal cut set of X. A
fragment of minimum cardinality is called an atom of X.

The degree of a vertex v ∈ V is defined to be the number of edges that have
v as an endpoint. The minimum degree, δ, of X is the minimum degree of all
vertices of X. Since N(v) is a cutset for any vertex v, an immediate upper
bound on the connectivity of a connected graph is that:

κ ≤ δ (2)

A graph is said to be bipartite if there exists a partition of V into two parts
P1, P2 such that vu /∈ E(X) for any v, u ∈ Pi, (i = 1, 2).

Now let Aut(X) denote the automorphism group of X. Graph X is said to
be vertex transitive if, for any pair of vertices u, v, there exists some g ∈ Aut(X)
such that g(u) = v. An orbit of Aut(X), (or equivalently an orbit of X) is a
set {xg : g ∈ Aut(X)} for some x ∈ V (X). The distinct orbits of a graph form
a partition of the vertex set of the graph. A graph is said to be half-vertex
transitive if it is bipartite with partition P1, P2 and has two orbits, O1, O2 such
that (without loss of generality) P1 = O1 and P2 = O2.

Another important concept is an imprimitive block. Let T be a set and G a
permutation group that acts on it. A proper subset A of T of size greater than
1 is said to be an imprimitive block (or equivalently a block of imprimitivity)
of G on T if every σ ∈ G has either σ(A) = A or σ(A) ∩ A = ∅. In the context
of graph theory, this means that, given a graph X(V,E), a subset Y ⊂ V is a
block of imprimitivity of X if it is an imprimitive block of Aut(X) on V (X).

3 Previous Claim

As mentioned above, the bound (1) stems from the property that removing
every vertex adjacent to a minimum degree vertex in a graph is sufficient to
disconnect the graph or isolate that vertex. What is of interest to us are graphs
that meet this upper bound, in other words graphs that have connectivity equal
to their minimum degree. One example of a family of such graphs are the
complete graphs, each of which can only be disconnected by removing all but
one of their vertices. This claim of completeness is a very strong condition; of
interest is finding weaker conditions that also result in these highly connected
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graphs. One well established condition is that any edge transitive graph has
connectivity equal to its minimum degree [2]. Edge transitive graphs are either
vertex transitive or are half-vertex transitive [3], so the family of edge transitive,
half-vertex transitive graphs have connectivity equal their degree. The question
that follows is whether this family can be extended to a larger family of graphs
that also has the property of high connectivity.

To this end, Meng [1] claims that any connected bipartite graph with two
orbits has connectivity equal to its degree. Unfortunately, this claim is not
true. An assumption is made in their argument that any bipartite graph with
two orbits is half-vertex transitive. This need not be the case, as the graph G
below illustrates:

This graph is bipartite, with bipartition {1,2,3,4,5,6} and {7,8,9,10,11,12},
and has two orbits, {1,2,5,6,7,8,11,12} and {3,4,9,10}, but its orbits do not
coincide with its bipartition, so it is not half-vertex transitive. Additionally,
G has minimum degree 3, but both {3,9} and {4,10} are cut sets of size two,
so κ(G) < δ(G). In fact, this graph is but one of an entire family of bipartite
graphs with two orbits which have connectivity less than their degree. Graph
G can be constructed by taking two K3,3 graphs and performing a two-switch
on a one edge from one K3,3 and one edge from the other.

This same process can be repeated for any Kn,n, the result being an n-
regular, connected, bipartite graph with two orbits and a cut set of size 2.
Therefore for any positive integer k, the graph H constructed in this way using
two copies of Kk+2,k+2 has δ(H) − κ(H) = k. In other words, not only can
the equality between the connectivity and minimum degree be broken, but their
difference can be made arbitrarily large.
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Fortunately, while the claim of the paper is incorrect, the weaker claim that
half-vertex transitive graphs have connectivity equal to their degree is true, and
is proved by the argument of the paper. I will therefore attempt to recover the
this weaker claim by following the argument laid out in the paper.

The argument relies on three previously proven theorems. These are:

Theorem 1 [2] Let X = (V,E) be connected graph which is not a complete
graph.

(i) κ(X) = δ(X) if and only if every atom of X has cardinality 1;
(ii) if κ(X) < δ(X), then each atom has cardinality at most [(|V |−κ(X))/2]

and induces a connected subgraph of X.

Theorem 2 [7] If X=(V,E) is a connected graph which is not a complete graph,
then distinct atoms of X are disjoint. Thus if κ(X) < δ(X), the atoms of X are
imprimitive blocks of X.

Theorem 3 [3] Let X=(V,E) be a connected graph. If W is a minimum vertex
cut set and A an atom of X, then A ∩W = ∅ or A ⊆W .

4 Recovering The Proof

Let X = (V,E) be a connected half-vertex transitive graph. Since each of the
vertices in each half of the bipartition is the image under an automorphism of
every other vertex in that half of the bipartition, X is semi-regular. In this
section X0 and X1 will denote the two halves of the biparition, or equivalently
X0 and X1 will denote the two orbits of Aut(X). Let m denote the valency of
vertices in X0, and let n denote the valency of vertices in X1. Without loss of
generality assume that m ≤ n. Therefore δ(X) = m. Let A be an atom of X,
and let A0 = X0∩A, A1 = X1∩A. Since X0 and X1 partition X, A = A0∪A1.

Lemma 1 Let X=(V,E) be a connected half-vertex transitive graph, and A be
an atom of X. If κ(X) < δ(X), then Ai = A∩Xi (i=0,1) have size greater than
1.

Proof: Since X = (V,E) has two orbits, it must have at least two vertices.
Graph X is bipartite, so the only complete graph that X could be is K2, but
K2 has δ(K2) = κ(K2), so X is not complete. Therefore, since X is connected,
Theorem 1 indicates that Y = X[A] is a connected subgraph of X with at least
two vertices. Since Y is connected and bipartite, each half of the bipartition
must have at least one element, so |Ai| ≥ 1 for i ∈ 0, 1. Now suppose that
|Ai| = 1 for one of the two possible values of i.

Case 1: |A0| = 1. Then, |A1| ≤ m since Y is connected, so every vertex in
A1 must be adjacent to the single vertex in A0.

Subcase 1.1: Let |A1| = m. Then |N(A)| ≥ n−1, as each vertex in A1 must
be adjacent to n vertices, only one of which is in A0. If |N(A)| = n − 1, then
every vertex in N(A) is adjacent to all m vertices of A1, so N(N(A)) = A1,
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implying that N(A) ∪ A is a component of X. Since X is connected, this
means that N(A) ∪ A = X, which would mean that A is not an atom of X, a
contradiction. Therefore |N(A)| > n− 1, or equivalently,

κ(X) = |N(A)| ≥ n ≥ m = δ(X),

again a contradiction.
Subcase 1.2: Let |A1| = p < m. Then N(A0)\A1, the set of neighbors

of the single vertex in A0 that are not in A1, has |N(A0)\A1| = m − p. Let
q = |N(A1)\A0|. Each vertex in A1 is adjacent to n vertices in X0, one of which
is in A0, so q ≥ n − 1. Each vertex in A0 is adjacent to m vertices in X1, one
of which is in A1, so q ≥ m− 1. Then:

|N(A)| = |N(A0)\A1|+ |N(A1)\A0| = m− p+ q ≥ m+ n− p− 1.

Since |N(A)| = κ(X) < δ(X) = m, these two inequality chains combine to
define the inequality m > m + n − p − 1, which implies that 0 > n − p − 1, or
equivalently, p+ 1 > n. I defined p < m, so m ≥ p+ 1 > n, a contradiction, as
m ≤ n.

Case 2: |A1| = 1. Then |A0| ≤ n since Y is connected, so every vertex in A0

must be adjacent to the lone vertex in A1.
Subcase 2.1: Assume |A0| = n. Then we have |N(A)| ≥ m − 1, as each

vertex in A0 is adjacent to m vertices of X1, only one of which is in A1. Since
|N(A)| = κ(X) < m, |N(A)| = m − 1. Then each vertex in A0 is adjacent to
the same m vertices of X1, call this set M . Each vertex of M is adjacent the n
vertices of A0, but the valency of elements of M is n, so each element of M is
adjacent to only elements of A0. Since N(A) ⊂ M , this means that N(A) ∪ A
is a component of X, but X is connected so N(A) ∪A = X. Thus N(A) is not
a cut set of X, so A is not an atom of X, a contradiction.

Subcase 2.2: Now assume |A0| = p < n. Then |N(A1)\A0| = n − p, as the
single vertex in A1 has n neighbors, p of which are in A1. Let q = |N(A0)\A1|.
Each vertex in A0 is adjacent to m vertices in X1, one of which is in A1, so
q ≥ m− 1. Then |N(A)| = |N(A1)\A0|+ |N(A0)\A1|, so

m > κ(X) = |N(A)| = n− p+ q ≥ n+m− p− 1.

So m > n + m − p − 1, or equivalently, p + 1 > n. We defined p < n, so
p < n < p+ 1, a contradiction, as p and n are integers. Thus, neither |A0| nor
|A1| can have cardinality 1. �

Lemma 2 Let X = (V,E) be a connected half-vertex transitive graph, and A
be an atom of X, with Y=X[A]. If κ(X) < δ(X), then Aut(Y ) acts transitively
on Ai = A ∩Xi(i = 0, 1).

Proof: By Lemma 1, A0 = A ∩X0 and A1 = A ∩X1 have at least two vertices.
Therefore there exist a pair of vertices v, u ∈ A0, and since X is half-vertex
transitive, there exists an automorphism φ : X → X such that φ(u) = v.
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Therefore v ∈ A and v ∈ φ(A), so A ∩ φ(A) 6= ∅. Therefore, by Theorem 2,
φ(A) = A. No element of A0 can be mapped to A1 or vice-versa, as A1 and A0

are contained in different orbits of X. Therefore φ(A0) = A0 and φ(A1) = A1.
Thus the restriction of φ to Y is an automorphism on Y . The set of all such
restrictions is transitive on A0 and A1, as Aut(X) is transitive on X0 and X1,
so the automorphism group of Y acts transitively on A0 and A1. �

Lemma 3 Let X=(V,E) be a connected half-vertex transitive graph with two
orbits. If κ(X) = δ(x), then:

(i) Every vertex of X lies in an atom, and
(ii) Every atom A satisfies |A| ≤ κ(x).

Proof: (i) By Lemma 1, the subgraph Y of X induced by any atom A contains at
least two vertices of both X0 and X1. Therefore at least one element of X0 and
X1 are contained in an atom. The automorphism group Aut(X) is transitive
on X0 and X1, so every element of X0 is the image of an element of A0 and
every element of X1 is the image of an element of A1. For any automorphism
Φ : X → X, N(Φ(A)) = Φ(N(A)), so Φ(A) is also an atom of X. Therefore the
images of vertices of A0 and A1 under automorphisms are contained in atoms,
so every element of X lies in an atom.
(ii) Let F = N(A). By (i), every vertex in X lies in an atom of X, so any
vertex v ∈ F likewise lies in some atom A′ of X. Then, by Theorem 3, since
A′ ∩ F 6= ∅, A′ ⊆ F , so |A| = |A′| ≤ |F | = κ(X). �

Theorem 4 If X=(V,E) is a half-vertex transitive graph, then κ(X) = δ(X).

Proof: Assume for sake of contradiction that κ(X) < δ(X). By Lemma 3, every
vertex of X lies in an atom, and atoms are blocks of imprimtivity, so they are
disjoint. Thus V (X) is the disjoint union of distinct atoms of X. Therefore if A
is an atom of X, there is a set of permutations in {σ1, ..., σk} ⊆ Aut(X), such
that

V (X) =

k⋃
i=1

σi(A),

and σi(A) ∩ σj(A) = ∅ for i 6= j. By Theorem 1, the subgraph Y = X[A]
induced by A, is a connected subgraph of X with more than one vertex, and
by Lemma 1, A0 = X0 ∩ A and A1 = X1 ∩ A both have cardinality greater
than 1. Since Aut(X) has orbits X0 and X1, σi(A0) ⊆ X0 for any i ∈ (1, ..., k),
and likewise σ(A1) is contained in X1. Since σi(A) ∩ σj(A) = ∅, for i 6= j,

σi(A0) ∩ σj(A0) = ∅ = σi(A1) ∩ σj(A1) for i 6= j. Thus X0 =
⋃k

i=1 σi(A0), and

X1 =
⋃k

i=1 σi(A1), which in turn implies that |Xi|/|Ai| = k for i = 0 and i = 1.
By the Handshaking Lemma, |X0|/|X1| = n/m, so |A0|/|A1| = nk/mk = n/m
as well.

By Lemma 2, Aut(Y ) acts transitively on A1 and A2, so Y0 = X[A0] and
Y1 = X[A1] are regular, implying that Y = X[A] is semi-regular. Consider δ(Y ).
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Since |A0|/|A1| = n/m, A0 has at least as many vertices as A1 and the same
number of incident edges, so by the Handshaking Lemma, δA0 ≤ δA1 . Therefore
δ(Y ) = δA0

. Certainly, |A0|δA0
= |A1|δA1

, so equivalently δA0
|A0|/|A1| = δA1

.
Let d = δ(Y ) = δA0

. Since |A0|/|A1| = n/m, then δA1
= dn/m. Therefore every

vertex in A0 has m−d neighbors in N(A) and every vertex in A1 has n−dn/m
neighbors in N(A). Summing these values gives |N(A)| ≥ m− d+ n− dn/m =
m+ n− (m+ n)d/m. By assumption, m > |N(A)|, so

m > m+ n− (m+ n)d/m.

It follows that
(m+ n)d/m > n.

Multiplication through by m/(n+m) gives

d > mn/(m+ n).

The size of A0 must be at least as large as the minimum degree of A1 in Y ,
and likewise the size of A1 must be at least as large as the minimum degree of
A0 in Y . Therefore |A| = |A0|+ |A1| ≥ δA1

+ δA0
= dn/m+ d = d(m+ n)/m,

which, with the aid of our inequality regarding d, can be converted into |A| >
(mn/(m + n))(m + n)/m = n ≥ m > κ(X). Lemma 3 states that |A| ≤ κ(X),
a contradiction. Thus κ(X) ≥ δ(X) and κ(X) ≤ δ(X), so κ(X) = δ(X). �

5 Final Considerations and an Example

Connected graphs that are edge transitive must be either vertex transitive or
half-vertex transitive. It has previously been shown [2], that edge transitive
graphs have connectivity equal to their minimum degree. With the revised con-
clusion of our argument, this claim can be extended to all half-vertex transitive
graphs. After a quick survey of the literature, we were unable to find an ex-
ample of a half-vertex transitive graph that is not edge transitive, nor a proof
that all half-vertex transitive graphs must be edge transitive. So for the sake of
completeness, we offer the following construction.

Let G be a graph with 30 vertices and an edge set indicated in the figure
below. Let K4,6 denote the complete bipartite graph with independent sets of
size 4 and 6. Let K4 be the complete graph on 4 vertices. Then S(K4) denotes
the graph formed by subdividing the edges of K4.
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Graph G consists of three independent sets of size 6 and three independent sets
of size 4 such that each independent set of size 6 has edges between it and two
of the independent sets of size 4. In the future, these independent sets will
be referred to as 6-sets and 4-sets respectively. The subgraph induced by any
adjacent pair of these sets is either isomorphic to K4,6 or S(K4), alternating
so that each independent set is contained in one induced K4,6 and one induced
S(K4). The structure of the induced S(K4) subgraph is shown below.

Theorem 5 Graph G is half-vertex transitive, but not edge transitive.

Proof: First we show thatG is half-vertex transitive. There are no edges between
any two of the 6-sets or 4-sets, so G is bipartite with all 6-sets in one cell of the
bipartion, and all 4-sets in the other. It remains to show that G has two orbits
on these color classes. Each vertex in a 6-set has degree 6 and each vertex in a
4-set has degree 9, so G is not vertex transitive. By examining the figure above,
it is clear that G has a 3-fold rotational symmetry, so any 6-set (or 4-set) is the
image of any other 6-set (or 4-set) under an automorphism. Now I must simply
show that Aut(G) is transitive on each of the 4 and 6-sets. Since K4 is vertex
and edge transitive, it follows that S(K4) is half-vertex transitive with its edge
and vertex induced vertices forming the two cells of its bipartition. Then since
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each S(K4) shares its vertices with two copies of K4,6, there is a subgroup of
Aut(G) for each induced S(K4) that acts as Aut(S(K4)) on that subgraph and
is the identity everywhere else. Then, since every 4-set and 6-set is contained
in an induced S(K4), Aut(G) is transitive on each of the 4-sets and 6-sets of G,
so G is half-vertex transitive.

Now I show that G is not edge transitive. Let e0 be an edge in G such that
e0 is contained in an induced S(K4). I count the number of 4-cycles containing
e0. Since S(K4) contains no 4-cycles, any such 4-cycle must intersect one of
the two copies of K4,6 that share vertices with the induced S(K4). There are
therefore two cases, one for each of the two copies of K4,6 used.

Case 1: Assume that the 4-cycle uses edges contained in the induced K4,6

that shares 6 vertices with S(K4). Call this induced K4,6 N1.

Let e0 be the red edge in the diagram above. The second edge in the cycle
(green) must have one vertex in N1 and the other vertex in e0, so there are two
possibilities. The third edge (blue) can be any edge in N1 that shares a vertex
with the second, so there are 4 possibilities. The last edge (yellow) must return
to the vertex of e in N1, so there is only one possible choice. Thus there are 8
4-cycles of this type.

Case 2: Assume that the 4-cycle uses edges contained in the induced K4,6

that shares 4 vertices with S(K4). Call this induced K4,6 N2.
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Let e0 be the red edge in the diagram above. The second edge in the cycle
(green) must have one vertex in N2 and the other vetex in e0, so there is one
possibility. The third edge (blue) can be any edge in N2 incident to the green
edge, so there are 6 possibilities. The final edge (yellow) must return to e0, so
there is only one choice. Thus there are 6 4-cycles of this type, for a total of 14
4-cycles containing e0.

Now let e1 be an edge in G such that e1 is contained in an induced K4,6. I
count the number of 4-cycles containing e1. There are three cases, one where
the 4-cycle is contained in the K4,6 and two where the 4-cycle uses edges from
the neighboring copies of S(K4).

Case 1: Assume first that the 4-cycle is entirely contained in the induced
K4,6.

Let e1 be the red edge in the diagram above. There are 3 choices for the edge
(green) incident with the rightmost vertex of e1, and 5 choices for the edge
(yellow) incident with the leftmost vertex of e1. The final edge (blue) must
connect the end vertices of these two edges, so there is one choice available.
Therefore there are 15 4-cycles of this type.

Case 2: Assume now that the 4-cycle uses edges contained in the induced
S(K4) that shares 4 vertices with S(K4). Call this induced S(K4) N1.
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Let e1 be the red edge in the diagram above. There are three edges incident
with e1 in N1 (green), each of which must be followed up by the single incident
(blue) edge with a vertex in the induced K4,6. The final edge (yellow) must
return to the first vertex of the cycle, so there are 3 4-cycles of this type.

Case 3: Finally, assume that the 4-cycle uses edges contained in the induced
S(K4) that shares 6 vertices with S(K4). call this induced S(K4) N2.

Let e1 be the red edge in the induced subgraph above. There are two (green)
edges incident with e1 in N2, each of which has two incident edges (blue) that
have a vertex in the induced K4,6 containing e1. The final edge (yellow) must re-
turn to the vertex in e1 that is also in N1, so there are four 4-cycles of this type,
for a total of 22 4-cycles containing e1. Since e0 and e1 are contained in a differ-
ent number of 4-cycles e1 cannot be the image of e0 under any automorphism
of G. Thus G is not edge transitive. �
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